NILMTK-Contrib

NILMTK-Contrib

conda package version

NILMTK-Contrib

This repository contains all the state-of-the-art algorithms for the task of energy disaggregation implemented using NILMTK’s Rapid Experimentation API. You can find the paper here. All the notebooks that were used to can be found here.

Using the NILMTK-contrib you can use the following algorithms:

  • Additive Factorial Hidden Markov Model
  • Additive Factorial Hidden Markov Model with Signal Aggregate Constraints
  • Discriminative Sparse Coding
  • RNN
  • Denoising Auto Encoder
  • Seq2Point
  • Seq2Seq
  • WindowGRU

The above state-of-the-art algorithms have been added to this repository.

You can do the following using the new NILMTK’s Rapid Experimentation API:

  • Training and Testing across multiple appliances
  • Training and Testing across multiple datasets (Transfer learning)
  • Training and Testing across multiple buildings
  • Training and Testing with Artificial aggregate
  • Training and Testing with different sampling frequencies

Refer to this notebook to know more about the usage of the API.

Installation Details

We’re currently testing a conda package. You can install in your current environment with:

conda install -c conda-forge -c nilmtk nilmtk-contrib

or create a dedicated environment (recommended) with:

conda create -n nilm -c conda-forge -c nilmtk nilmtk-contrib

Refer to this notebook for using the nilmtk-contrib algorithms, using the new NILMTK-API.

Dependencies

  • NILMTK>=0.4
  • scikit-learn>=0.21 (already required by NILMTK)
  • Keras>=2.2.4
  • cvxpy>=1.0.0

Note: For faster computation of neural networks, it is suggested that you install keras-gpu, since it can take advantage of GPUs. The algorithms AFHMM, AFHMM_SAC and DSC are CPU intensive, use a system with good CPU for these algorithms.

Rajat Kumar
Rajat Kumar
Data Science Associate II

My research interests include Natural Language Processing, Machine Learning and Data Science.

Related