Evaluating Machine Learning Models for Disparate Computer Systems Performance Prediction

Abstract

Performance prediction is an active area of research due to its applicability in the advancements of hardware-software co-development. Several empirical machine-learning models, such as linear models, non-linear models, probabilistic models, tree-based models and, neural networks, are used for performance prediction. Furthermore, the prediction model’s accuracy may vary depending on performance data gathered for different software types (compute-bound, memory-bound) and different hardware (simulation-based or physical systems). We have examined fourteen machine-learning models on simulation-based hardware and physical systems by executing several benchmark programs with different computation and data access patterns. Our results show that the tree-based machine-learning models outperform all other models with median absolute percentage error (MedAPE) of less than 5% followed by bagging and boosting models that help to improve weak learners. We have also observed that prediction accuracy is higher on simulation-based hardware due to its deterministic nature as compared to physical systems. Moreover, in physical systems, the prediction accuracy of memory-bound algorithms is higher as compared to compute-bound algorithms due to manufacturer variability in processors.

Publication
In 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)

Supplementary notes can be added here, including code, math, and images.

Rajat Kumar
Rajat Kumar
NLP Researcher

My research interests include Natural Language Processing, Machine Learning and Data Science.

Related